High Dimensional Global Minimum Variance Portfolio
نویسندگان
چکیده
منابع مشابه
Bayesian estimation of the global minimum variance portfolio
In this paper we consider the estimation of the weights of optimal portfolios from the Bayesian point of view under the assumption that the conditional distribution of the logarithmic returns is normal. Using the standard priors for the mean vector and the covariance matrix, we derive the posterior distributions for the weights of the global minimum variance portfolio. Moreover, we reparameteri...
متن کاملDirectional Variance Adjustment: improving covariance estimates for high-dimensional portfolio optimization
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on Factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sam...
متن کاملMean - Variance Portfolio Optimisation
QP is the optimization of a quadratic function subject to linear equality and inequality constraints. It arises in multiple objective decision making where the departure of the actual decisions from their corresponding ideal, or bliss, value can be evaluated using a weighted quadratic norm as a measure of deviation. The formulation of mean-variance optimization of uncertain systems also leads t...
متن کاملLinear statistical inference for global and local minimum variance portfolios
Traditional portfolio optimization has been often criticized since it does not account for estimation risk. Theoretical considerations indicate that estimation risk is mainly driven by the parameter uncertainty regarding the expected asset returns rather than their variances and covariances. This is also demonstrated by several numerical studies. The global minimum variance portfolio has been a...
متن کاملHigh-dimensional regression with unknown variance
We review recent results for high-dimensional sparse linear regression in the practical case of unknown variance. Different sparsity settings are covered, including coordinate-sparsity, group-sparsity and variation-sparsity. The emphasis is put on non-asymptotic analyses and feasible procedures. In addition, a small numerical study compares the practical performance of three schemes for tuning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2015
ISSN: 1556-5068
DOI: 10.2139/ssrn.2650981